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Abstract

The steady laminar magnetohydrodynamic (MHD) thermosolutal Marangoni convection in the presence of a uniform applied magnetic field is
considered in the boundary layer approximation. It is assumed that the surface tension varies linearly with both the temperature and concentration
and that the interface temperature and concentration are quadratic functions of the interface arc length x. Exact analytical solutions for the velocity,
temperature and concentration boundary layers are reported. The heat and mass transfer characteristics of the flow as functions of the physical
parameters of the problem are discussed in detail.
© 2007 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Marangoni boundary layers are dissipative layers which may
occur along liquid–liquid or liquid–gas interfaces. The surface
tension gradients that are responsible for Marangoni convec-
tion can be both temperature and/or concentration gradients.
The basic research work in this field was first promoted by
Napolitano [1,2]. Marangoni flow induced by surface tension
variations along the liquid–fluid interface causes undesirable
effects in crystal growth melts in the same manner as buoyancy-
induced natural convection [3,4]. These undesirable effects be-
come dominant in the absence of buoyancy forces in the mi-
crogravity environment of space-based crystal growth experi-
ments [4,5].

In spite of its significance and relevance in microgravity
crystal growth, welding, semiconductor processing and several
other fields of space science, thermosolutal Marangoni convec-
tion has not been fully explored especially regarding prelimi-
nary questions of a general and basic nature. As pointed out
by Napolitano [6], the field equations in the bulk fluids do not
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depend explicitly on the geometry of the interface when using
as coordinates the arc length (x). This, together with the other
surface balance equations, introduces kinematic, thermal and
pressure couplings for the flow fields in the two fluids. Napoli-
tano and Golia [7] have shown that the fields are uncoupled
when the momentum and energy resistivity ratios of the two
layers and the viscosity ratio of the two fluids are much less than
one. Furthermore, as shown by Napolitano and Russo [8], sim-
ilarity solutions for Marangoni boundary layers exist when the
interface temperature gradient varies as a power of the interface
arc length (x). The power laws for all other variables, including
the mean curvature, were determined. Numerical solutions were
found, analyzed and discussed on Marangoni boundary layers
in subsequent papers by Golia and Viviani [9,10], Napolitano et
al. [11] and Pop et al. [12].

The numerous investigations of Marangoni flow in various
geometries have been reviewed in the literature [13,14]. Some
of the papers most relevant to this work include the order-
of-magnitude analysis of Marangoni flow given by Okano et
al. [15] that gave the general trends for the variation of the
Reynolds number with the Grashof number, Marangoni num-
ber, and Prandtl number. Hirata and his co-workers experi-
mentally and numerically investigated Marangoni flow for var-
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Nomenclature

a Parameter, Eq. (21)
a1,2,3 Parameters, Eqs. (25)
B0 Magnetic induction, Eq. (2)
c Dimensional concentration, Eq. (4)
C Dimensionless concentration, Eqs. (8)
C0 Dimensional constant, Eq. (7b)
D Mass diffusivity, Eq. (4)
f ′(0) Tangential component of the dimensionless inter-

face velocity
f (η) Similar stream function, Eqs. (8)
1F1 Confluent hypergeometric function, Eqs. (44)
H Hartmann number
L Reference length, Eq. (14)
ṁ Mass flow rate per unit span, Eq. (16)
M Square of the Hartmann number H , Eq. (9)
p Parameter, Eq. (38)
Pr Prandtl number, Pr = ν/α

r Ratio of the solutal and thermal Marangoni num-
bers, Eq. (13)

s Parameter, Eq. (53)
s1,2 Parameters, Eq. (26)
Sc Schmidt number, Sc = ν/D

T Dimensional temperature, Eq. (3)
T0 Dimensional constant, Eq. (7b)

u,v x- and y-component of the dimensional velocity, re-
spectively.

z Independent variable, Eq. (41)
x, y Cartesian coordinates

Greek symbols

α Thermal diffusivity, Eq. (3)
δel Electrical conductivity, Eq. (2)
δ Thickness of velocity boundary layer, Eq. (33)
Δ Discriminant, Eq. (27)
γ Coefficients, Eq. (5)
η Similarity independent variable, Eqs. (8)
μ Dynamic viscosity
υ Kinematic viscosity, ν = μ/ρ

θ Temperature similarity variable, Eqs. (8)
ρ Density
σ Surface tension, Eq. (5)
ψ Stream function, Eqs. (8)

Subscripts

T Thermal quantity
C Solutal quantity
0 at η = 0
∞ for η → ∞
ious substances in geometries with flat surfaces relevant to this
work [13,15,16]. Arafune and Hirata [17] presented a similar-
ity analysis for just the velocity profile for Marangoni flow
that is very similar to this derivation but the results are ef-
fectively limited to surface tension variations that are linearly
related to the surface position. Slavtchev and Miladinova [18]
presented similarity solutions for surface tension that varied as
a quadratic function of the temperature as would occur near a
minimum. Schwabe and Metzager [19] experimentally inves-
tigated Marangoni flow on a flat surface combined with nat-
ural convection in a unique geometry where the Marangoni
effect and the buoyancy effect could be varied independently.
Christopher and Wang [3] studied Prandtl number effects for
Marangoni convection over a flat surface and presented approx-
imate analytical solutions for the temperature profile for small
and large Prandtl numbers.

Napolitano et al. [20] considered double-diffusive boundary
layer along a vertical free surface. Pop et al. [12] analyzed ther-
mosolutal Marangoni forced convection boundary layers that
can be formed along the surface, which separates two immis-
cible fluids in surface driven flows when the Reynolds number
is large enough. They derived similarity equations for the case
in which an external pressure gradient is imposed and produced
numerical results for these equations based on the Keller-box
and superposition methods. Recently, Al-Mudhaf and Chamkha
[21] reported numerical and approximate results for thermoso-
lutal Marangoni convection along a permeable surface in the
presence of heat generation or absorption and a first-order
chemical reaction effects. Exact analytic solutions for this case
have been reported recently by Magyari and Chamkha [22].
As mentioned by Christopher and Wang [23], for an interface
with evaporation or condensation at the surface, the tempera-
ture distribution along the interface is primarily a function of
the vapor temperature and the heat transfer coefficient rather
than the Marangoni flow. For instance, Christopher and Wang
[23] showed that the calculated temperature distribution in va-
por bubble attached to a surface and in the liquid surrounding
the bubble was primarily due to the heat transfer through the
vapor rather than in the liquid region and the temperature varia-
tion along the surface was not linear but could be described by a
power-law function. For this reason, it is assumed that both the
wall temperature and solute concentration are power-law func-
tions of the distance along the plate surface.

The application of magnetic fields is widely used in the
semiconductor crystal growth industry as well as in the cast-
ing technologies to dampen the undesired convective heat and
mass transport fluctuations in the melt. In the field of the
growth of large diameter silicon crystals by the Czochralski
(Cz) technique, steady magnetic fields are used to improve
the process conditions by damping harmful temperature fluc-
tuations in the melt as well as by controlling the oxygen dis-
tribution in the crystal [24]. Hainke et al. [24] investigated
the basic interactions between magnetic fields and natural and
Marangoni convections for crystal growth and alloy solidifica-
tion. The influence of steady magnetic fields [25–27] as well
as of rotating magnetic fields [28–31] on the buoyant flow
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was analyzed intensively by using so-called convection cells
filled with liquid Gallium to which different boundary con-
ditions can be applied. In such systems, different studies can
be made to select proper parameters of the magnetic field in
which a beneficial effect on the crystal growth process can be
expected. Witkowski and Walker [32] considered axisymmet-
ric flow driven by Marangoni convection and rotating magnetic
field in a floating-zone configuration for low Prandtl number
and different Marangoni number values. Priede et al. [33] stud-
ied the theoretical aspects of thermocapillary convection in liq-
uid metals under the influence of magnetic fields. Also, Priede
et al. [34] demonstrated that a magnetic field acting on the ther-
mocapillary flow of a low Prandtl number fluid caused the fluid
to behave like a high Prandtl number fluid. This important fea-
ture was exemplified by considering the linear stability of a
unidirectional thermocapillary flow set up by a temperature gra-
dient parallel to the free surface of an unbounded planar fluid
layer. Combined, surface tension and buoyancy-driven convec-
tion in a rectangular cavity has been investigated by Rudraiah et
al. [35] and the oscillatory Marangoni convection in a vertical
magnetic field by Hashim and Arifin [36].

Due to the inherent complexity of MHD Marangoni con-
vective flows, none of the above references attempted to obtain
exact analytical solutions for such flows. The present work fo-
cuses on the exact analytical solution for thermosolutal MHD
Marangoni boundary layers due to imposed temperature and
concentration gradients in the presence of a constant magnetic
field. The analysis assumes that the surface tension varies lin-
early with temperature and concentration but the wall tempera-
ture and concentration variations are quadratic functions of the
interface arc length. In addition, the magnetic Reynolds number
is assumed small and the induced magnetic field is neglected.

2. Problem formulation and governing equations

Consider steady laminar thermosolutal Marangoni boundary
layer flow of a viscous, Newtonian and electrically-conducting
fluid in the presence of a transverse magnetic field. The mag-
netic field is assumed to be of uniform strength and the mag-
netic Reynolds number is assumed to be small, so that the
induced magnetic field is neglected. In addition, no electric
field is assumed to exist, and the Hall effect is negligible. In
the absence of an electric field, the small magnetic Reynolds
number assumption uncouples Maxwell’s equations from the
Navier–Stokes equations (see Cramer and Pai [37]). The inter-
face temperature and concentration are assumed to be quadratic
functions of the distance x along the interface. The latter as-
sumptions guarantee the existence of similarity solutions of
power-law type in the presence of a uniform transversal mag-
netic field. Unlike the Boussinesq effect on the body force term
in buoyancy-induced flows, the Marangoni surface tension ef-
fect acts as a boundary condition on the governing equations of
the flow field. The governing equations for this investigation are
based on the balance laws of mass, linear momentum, energy
and concentration species. Taking the above assumptions into
consideration, these equations can be written in dimensional
form as:
∂u

∂x
+ ∂v

∂y
= 0 (1)

u
∂u

∂x
+ v

∂u

∂y
= υ

∂2u

∂y2
− B2

0δel

ρ
u (2)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
(3)

u
∂c

∂x
+ v

∂c

∂y
= D

∂2c

∂y2
(4)

The surface tension is assumed to depend on temperature and
concentration linearly,

σ = σ0
[
1 − γT (T − T∞) − γc(c − c∞)

]
(5)

where

γT = − 1

σ0

∂σ

∂T

∣∣∣∣
c

, γc = − 1

σ0

∂σ

∂c

∣∣∣∣
T

(6)

denote the temperature and concentration coefficients of the
surface tension, respectively.

The boundary conditions of this problem are given by

μ
∂u

∂y

∣∣∣∣
y=0

= −∂σ

∂x

∣∣∣∣
y=0

= σ0

(
γT

∂T

∂x

∣∣∣∣
y=0

+ γc

∂c

∂x

∣∣∣∣
y=0

)
(7a)

v(x,0) = 0, T (x,0) = T∞ + T0X
2

c(x,0) = c∞ + C0X
2, X = x/L (7b)

u(x,∞) = 0, T (x,∞) = T∞, c(x,∞) = c∞ (7c)

where L is a reference length (which will be specified below)
and T0 and C0 are (positive or negative) dimensional constants.
The coordinate system, the velocity components and the inter-
face condition are shown in Fig. 1.

By introducing the stream function ψ(x, y) through the
usual definition u = ∂ψ/∂y, v = −∂ψ/∂x as well as the simi-
larity transformations,

ψ(x, y) = υXf (η)

η = y/L

T (x, y) = T∞ + T0X
2θ(η)

c(x, y) = c∞ + C0X
2C(η)

(8)

Fig. 1. Physical model, coordinate system and interface condition to a passive
gas.
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the boundary value problem (1)–(7) reduces to the solution of
the ordinary differential equations

f ′′′ + ff ′′ − f ′2 − Mf ′ = 0 (9)

θ ′′

Pr
+ f θ ′ − 2f ′θ = 0 (10)

C′′

Sc
+ f C′ − 2f ′C = 0 (11)

along with the boundary conditions

f (0) = 0, f ′′(0) = −2(1 + r), θ(0) = 1, C(0) = 1
f ′(∞) = 0, θ(∞) = 0, C(∞) = 0

(12)

In the above equations the primes denote differentiation with
respect to η, r stands for the dimensionless parameter

r = C0γc

T0γT

(13)

and Pr = υ/α, Sc = υ/D and M = B2
0L2δel/μ denote the

Prandtl number, Schmidt number and the square of the Hart-
mann number H = B0L

√
δel/μ, respectively. The reference

length L has been chosen as

L = − μυ

σ0T0γT

(14)

Having in view that with increasing temperature the surface
tension σ in general decreases, its temperature gradient γT

given by Eq. (6) is positive. Thus, the reference length cho-
sen according to Eq. (14) is positive only if T0 is negative (see
also [9]). We also mention that the parameter r represents pre-
cisely the ratio of the solutal and thermal Marangoni numbers
MaC = σ0γCC0L/(αμ) and MaT = σ0γT T0L/(αμ), respec-
tively, r = MaC/MaT .

Eqs. (9)–(12) show that the f -boundary value problem is
decoupled from the temperature and concentration boundary
value problems. Its solution f = f (η) (see Section 3) yields
the dimensional velocity field in the form

u(x, y) = υ

L
Xf ′(η), v(x, y) = −υ

L
f (η) (15)

The local mass flow in the boundary layer per unit span is given
by:

ṁ = ρ

∞∫
0

udy = ρυf (∞)X (16)

where f (∞) represents the similar entrainment velocity,
f (∞) = −(L/υ)v(x,∞). In this way we obtain

ṁ = −ρxv(x,∞) (17)

The aim of the present paper is (i) to show that the prob-
lem (9)–(12) admits exact analytical solutions for all three di-
mensionless functions f (η), θ(η) and C(η), and (ii) to discuss
the features of these solutions in terms of the parameters Pr, Sc,
M and r = MaC/MaT in some detail.
3. Exact solutions of the flow problem

The momentum boundary value problem is specified by the
equation

f ′′′ + ff ′′ − f ′2 − Mf ′ = 0 (18)

and the boundary conditions

f (0) = 0, f ′′(0) = −2(1 + r), f ′(∞) = 0 (19)

The function

f (η) = f∞(1 − e−aη) (20)

yields an exact solution of Eq. (18) when for the constants f∞
and a the relationship

f∞ = a − M

a
(21)

holds. The boundary condition f (0) = 0 is satisfied automat-
ically, the asymptotic condition f ′(∞) = 0 requires a > 0,
and thus f∞ = f (∞). Furthermore, the interface condition
f ′′(0) = −2(1 + r) requires

f∞a2 = 2(1 + r) (22)

Eqs. (21) and (22) lead to the cubic equation

a3 − Ma − 2(1 + r) = 0 (23)

which determines the value of a for specified values of the input
parameters M and r .

Then, the similar surface velocity results as

f ′(0) = af∞ = 2(1 + r)

a
= a2 − M (24)

The three roots of Eq. (23) can be calculated exactly from Car-
dano’s equations which in the present case become

a1 = s1 + s2

a2 = − s1 + s2

2
+ i

√
3

2
(s1 − s2)

a3 = − s1 + s2

2
− i

√
3

2
(s1 − s2)

(25)

where

s1 = 3
√

1 + r + √
Δ, s2 = 3

√
1 + r − √

Δ (26)

and

Δ = (1 + r)2 −
(

M

3

)3

(27)

As it is well known, the cubic equation admits a single real root
for Δ > 0 and three real roots for Δ � 0, such that for Δ = 0 at
least two of them are coincident. The discriminate (27) vanishes
when

M = 3(1 + r)2/3 (28)

the corresponding solutions being

a1 = 2(1 + r)1/3, a2 = a3 = −(1 + r)1/3 (Δ = 0) (29)

The curves of Fig. 2 represent the plots of Eq. (28) and specify
the nature of solutions of the cubic equation (23) in the para-
meter plane (r,M). For parameter values (r,M) below these
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Fig. 2. The curves are the plots of Eq. (28) for which the discriminant Δ vanishes. The dashed vertical line corresponds to r = MaC/MaT = −1. In domain A no
physical (i.e. real and positive) roots of the cubic equation (23) exist. In the domains C and D, as well as on the right branch of the Δ = 0-curve, a single physical
root is possible, while in the domain B two physical solutions exist which on the left branch of the Δ = 0-curve become coincident.
curves, where Δ > 0 (domains A and D), Eq. (23) admits at
most one real solution, while above the curves of Fig. 2, where
Δ < 0 (domains B and C), all three roots {a1, a2, a3} are real.

Between the roots {a1, a2, a3} and the coefficients of Eq. (23)
the following relationships hold

a1 + a2 + a3 = 0
a1a2 + a1a3 + a2a3 = −M

a1a2a3 = 2(1 + r)

(30a-c)

Eq. (30a) shows that it is not possible that in the domains B
and C all three roots {a1, a2, a3} are simultaneously positive or
negative. Therefore, we can obtain at most two physical (i.e.
positive) solutions for given values of the parameters M and r .
Furthermore, Eq. (30c) shows that

(i) For Δ > 0 the single real root is positive when r > −1
(domain D), and negative when r < −1 (domain A). This
means that in domain D a unique physical solution exists,
while in domain A no physical solution exists at all.

(ii) for Δ � 0 we have two positive real roots and one negative
real root when r < −1 (domain B and the left branch of the
Δ = 0 curve) and two negative real roots and one positive
real root when r > −1 (domain C and the right branch of
the Δ = 0 curve). This means that in domain B dual phys-
ical solution exists, while in domain A a unique physical
solution exists.

The real roots {a1, a2, a3} undergo a subtle change with the
variation of the parameters M and r . This phenomenon is il-
lustrated in Fig. 3 for −4 < r < +2 and M = 3, and M = 6,
respectively. In the range

−(
1 + (M/3)3/2) < r < −1 (31)

the f -boundary value problem admits dual solutions which be-
come coincident at the lower end of interval (31). In the range
r > −1 the solution is unique for any specified value of M > 0,
and corresponds to the upper branch of the curves shown in
Fig. 3.

The trajectories of the roots {a1, a2, a3} shown in Fig. 3
also lead to certain trajectories of the similar surface veloc-
ity f ′(0) given by Eq. (24). This correlation is illustrated in
Fig. 4 where the trajectories of the similar interface velocities
{f ′

1(0), f ′
2(0), f ′

3(0)} ≡ {f ′
01, f

′
02, f

′
03} associated with the roots

{a1, a2, a3} are plotted for M = 3 and −4 < r < +2. The sur-
face velocities are physical in the ranges where the correspond-
ing roots are positive (compare Fig. 4 to Fig. 3). The dashed
parts of the curves are non-physical.

The similar velocity f ′(η) is according to Eqs. (20) and (22)
a simple exponential function of η,

f ′(η) = 2(1 + r)

a
e−aη = f ′(0)e−aη (32)

for all values of M and r . Thus, for the case of physical roots
a > 0, one has f ′(η) > 0 for r > −1 and f ′(η) < 0 for r < −1,
which is also clearly seen in Fig. 4. Furthermore, the thickness
of the similar velocity boundary layer (32) is given by

δ = 2 ln 10

a
(33)

where a is one of the positive roots (25), and it is a function
the Hartmann number M and of the ratio r of the Marangoni
numbers, a = a(M, r).

The behaviour of δ for fixed r and small and large values of
M is given (e.g. for a = a1) by equations

δ ∼ 22/3 ln 10

(1 + r)1/3

[
1 − M

3 · 22/3(1 + r)2/3

+ M2

9 · 24/3(1 + r)4/3
− · · ·

]
(M 	 1) (34)

and
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Fig. 3. Trajectories of the roots {a1, a2, a3} for M = 3 and M = 6 when r varies from −4 to +2. Only the positive values of a′s (solid curves) correspond to physical
solutions of the flow boundary value problem (18), (19).

Fig. 4. Trajectories of the similar interface velocities {f ′
1(0), f ′

2(0), f ′
3(0)} ≡ {f ′

01, f ′
02, f ′

03} associated with the roots {a1, a2, a3} shown in Fig. 3, as being plotted
for M = 3, M = 6 and −4 < r < +2. The solid curves correspond to the physical (positive) and the dashed ones to the non-physical (negative) roots {a1, a2, a3} of
the cubic equation (23).
δ = 2 ln 10√
M

[
1 − 1 + r

M3/2
+ 5

2

(1 + r)2

M3
− 8

(1 + r)3

M9/2
+ · · ·

]

(M 
 1) (35)

respectively. The full dependence of δ = (2 ln 10)/a1 on M is
illustrated in Fig. 5 for three different values of the ratio r =
MaC/MaT of Marangoni numbers. Now it is clearly seen that,
to the leading order in M , the thickness δ is independent of
M , δ → (22/3 ln 10)(1 + r)−1/3 for M → 0 and decreases as
(1 + r)−1/3 with increasing values of r > −1. For M 
 1 on
the other hand, δ is, to the leading order in M , independent of r

and decreases with increasing values of M as M−1/2.
4. Exact solutions of the temperature problem

The temperature boundary value problem is specified by
Eq. (10) and the corresponding θ -boundary conditions (12).
Having in mind the exact flow solution (20), the θ -problem can
be written in the form

θ ′′ + ap
[
(1 − e−aη)θ ′ − 2ae−aηθ

] = 0 (36)

θ(0) = 1, θ(∞) = 0 (37)

where

p ≡ f∞
Pr = a2 − M

Pr = 2(1 + r)
Pr (38)
a a2 a3
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Fig. 5. Plot of the thickness δ = (2 ln 10)/a1 of the similar velocity boundary layer as a function of M for the values r = −0.5, 0 and 1.5 of the ratio r of Marangoni
numbers.
Two exact elementary solutions of the problem (36), (37) cor-
responding to the special values 1 and 2 of the parameter p can
easily be found. They are

θ(η) = 1

3
(2 + e−aη)e−aη (p = 1) (39)

and

θ(η) = e−2aη (p = 2) (40)

the corresponding (dimensionless) interface temperature gradi-
ents being θ ′(0) = −4a/3 and θ ′(0) = −2a, respectively.

The forms of Eq. (36), as well as of the special solutions (39)
and (40) suggest that for arbitrary values of the parameter p the
change of the independent variable

z = z0e−aη (41)

can be of advantage. Indeed, by doing so, and choosing

z0 = −p (42)

our Eq. (36) reduces to

z
d2θ

dz2
+ (1 − p − z)

dθ

dz
+ 2θ = 0 (43)

Eq. (43) has the form of Kummer’s equation of the conflu-
ent hypergeometric functions (see e.g. Abramowitz and Ste-
gun [38], Chapt. 13). Accordingly, its solution satisfying the
first boundary condition (37) is

θ(η) =
(

z

z0

)p
1F1(p − 2,p + 1, z)

1F1(p − 2,p + 1, z0)
(44)

where 1F1 denotes Kummer’s confluent hypergeometric func-
tion (see Abramowitz and Stegun [38], Chapt. 13).

Having in mind that 1F1(−1,2, z) = 1 − (z/2) and
1F1(0,3, z) = 1, from Eq. (44) one easily recovers the spe-
cial solutions (39) and (40) corresponding to p = 1 and p = 2,
respectively. Moreover, taking into account the asymptotic be-
haviour of 1F1 (see Abramowitz and Stegun [38], Chapt. 13),
it can be shown that the boundary condition θ(∞) = 0 can
only be satisfied for positive values of the parameter p. Thus,
Eq. (38) implies

M < a2 (45)

In addition to M < a2, the condition p > 0 along with a > 0
also requires

r = MaC

MaT

> −1 (46)

Therefore, the inequalities (45) and (46) specify the existence
domain of temperature solutions of the present problem. Having
in mind also Eq. (24), we may conclude that the physical solu-
tions of both the flow and temperature boundary value problems
correspond to the positive values of the dimensionless interface
velocity,

f ′(0) > 0 (physical solutions) (47)

Under these conditions, the dimensionless temperature gradient
θ ′(0) (which represents at the same time the dimensionless heat
flux) across the interface is obtained from Eq. (44) in the form

θ ′(0) = −ap

[
1 − p − 2

p + 1
1F1(p − 1,p + 2,−p)

1F1(p − 2,p + 1,−p)

]
(48)

For small and large values of the Prandtl number the interface
heat flux (48) scales with Pr and Pr1/2, respectively, according
to the relationships

θ ′(0) = −3f∞Pr (Pr → 0) (49)

θ ′(0) = −1.59
√

af∞ · Pr1/2 (Pr → ∞) (50)

As an illustration, in Figs. 6 and 7 the Prandtl number depen-
dence of the interface heat flux (48) and a few temperature pro-
files (44) are shown for specified values of the problem parame-
ters, respectively. As expected based on Fig. 6, the temperature
profiles of Fig. 7 become steeper and steeper with increasing
values of Pr.
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Fig. 6. Dependence on the Prandtl number of the (negative) interface heat flux (48) for r = 1 and M = 3 and M = 6, respectively. The corresponding (physical)
roots of the cubic equation (23) are a1 = 2.195823 and a1 = 2.732051, respectively. The dots correspond to the special cases (39) and (40) taken for M = 3 and
M = 6, respectively. The small and large Pr-behavior is given by the linear and square root law (49) and (50), respectively.

Fig. 7. Temperature profiles (44) corresponding to the parameter values r = 1, M = 6, and three different values of the Prandtl number.
5. Exact solutions of the concentration problem

Having in mind the exact flow solution (20), the concen-
tration problem specified by Eq. (11) and the corresponding
C-boundary conditions (12) can be written in the form

C′′ + as
[
(1 − e−aη)C′ − 2ae−aηC

] = 0 (51)

C(0) = 1, C(∞) = 0 (52)

where

s ≡ f∞
a

Sc = a2 − M

a2
Sc = 2(1 + r)

a3
Sc (53)

Thus, the present concentration problem is formally identical
with the temperature problem specified by Eqs. (36)–(38). Ac-
cordingly, all the results of θ -problem can immediately be tran-
scribed for the C-problem replacing θ , Pr and p by C, Sc and s,
respectively.
6. Summary and conclusions

Exact analytical solutions for the velocity, temperature and
concentration fields of steady thermosolutal MHD Marangoni
convection have been reported in this paper. The dependence of
the solutions on the parameters r = MaC/MaT (ratio of the so-
lutal and thermal Marangoni numbers), M (square of the Hart-
man number), Prandtl number Pr and Schmidt number Sc has
been examined in some detail. The main results of the paper can
be summarized as follows.

1. The flow solutions depend only on the parameters r and M .
Their domain of existence in the parameter plane (r,M) is
shown in Fig. 2.

2. Depending on the values of r and M there may exist either
unique or dual flow solutions associated with positive roots
a of the cubic equation (23) (see Figs. 2 and 3).
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3. The similar interface velocities f ′(0) depend on r and M

f∞ sensitively (see Fig. 4).
4. For a given solution of the flow problem and a specified

value of Pr, the temperature problem admits solutions only
in the domain {r = MaC/MaT > −1,M < a2} of the pa-
rameter plane (r,M). Hence, according to Eq. (24), the
physical solutions of both the flow and temperature bound-
ary value problems correspond to the positive values of
the dimensionless interface velocity f ′(0). The tempera-
ture solutions are unique and can be expressed in terms of
Kummer’s confluent hypergeometric functions. The char-
acteristics of these solutions have been discussed in Sec-
tion 4 in detail (see Fig. 7 for illustration).

5. To the leading order in M , the thickness δ of the similar ve-
locity boundary layer is independent of M and decreases as
(1 + r)−1/3 with increasing values of r > −1. For M 
 1
on the other hand, δ is, to the leading order in M , inde-
pendent of r and decreases with increasing values of M as
M−1/2 (see Eqs. (34) and (35) and Fig. 5).

6. The interface heat transfer coefficient θ ′(0) could also be
calculated exactly [see Eq. (48)]. For small and large val-
ues of the Prandtl number, its scales with Pr and Pr1/2,
respectively (see Eqs. (49), (50) and Fig. 6).

7. The solutions of the concentration boundary value problem
can be obtained by a simple transcription of the temperature
solutions (see Section 5).
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